Repair of spinal cord transection and its effects on muscle mass and myosin heavy chain isoform phenotype.
نویسندگان
چکیده
A number of significant advances have been developed for treating spinal cord injury during the past two decades. The combination of peripheral nerve grafts and acidic fibroblast growth factor (hereafter referred to as PNG) has been shown to partially restore hindlimb function. However, very little is known about the effects of such treatments in restoring normal muscle phenotype. The primary goal of the current study was to test the hypothesis that PNG would completely or partially restore 1) muscle mass and muscle fiber cross-sectional area and 2) the slow myosin heavy chain phenotype of the soleus muscle. To test this hypothesis, we assigned female Sprague-Dawley rats to three groups: 1) sham control, 2) spinal cord transection (Tx), and 3) spinal cord transection plus PNG (Tx+PNG). Six months following spinal cord transection, the open-field test was performed to assess locomotor function, and then the soleus muscles were harvested and analyzed. SDS-PAGE for single muscle fiber was used to evaluate the myosin heavy chain (MHC) isoform expression pattern following the injury and treatment. Immunohistochemistry was used to identify serotonin (5-HT) fibers in the spinal cord. Compared with the Tx group, the Tx+PNG group showed 1) significantly improved Basso, Beattie, and Bresnahan scores (hindlimb locomotion test), 2) less muscle atrophy, 3) a higher percentage of slow type I fibers, and 4) 5-HT fibers distal to the lesion site. We conclude that the combined treatment of PNG is partially effective in restoring the muscle mass and slow phenotype of the soleus muscle in a T-8 spinal cord-transected rat model.
منابع مشابه
Skeletal muscle calcineurin: influence of phenotype adaptation and atrophy.
Calcineurin (CaN) has been implicated as a signaling molecule that can transduce physiological stimuli (e.g., contractile activity) into molecular signals that initiate slow-fiber phenotypic gene expression and muscle growth. To determine the influence of muscle phenotype and atrophy on CaN levels in muscle, the levels of soluble CaN in rat muscles of varying phenotype, as assessed by myosin he...
متن کاملMetabolic profile of myosin heavy chain-based fiber types in the rat soleus after spinal cord transection
i Acknowledgments iv List of Tables and Figures vii Chapter
متن کاملAdaptations in metabolic capacity of rat soleus after paralysis.
To determine whether long-term reductions in neuromuscular activity result in alterations in metabolic capacity, the activities of oxidative, i.e., succinate dehydrogenase (SDH) and citrate synthase (CS), and glycolytic, i.e., alpha-glycerophosphate dehydrogenase (GPD), enzyme markers were quantified in rat soleus muscles 1, 3, and 6 mo after a complete spinal cord transection (ST). In addition...
متن کاملAltered content of AMP-activated protein kinase isoforms in skeletal muscle from spinal cord injured subjects.
AMP-activated protein kinase (AMPK) is a pivotal regulator of energy homeostasis. Although downstream targets of AMPK are widely characterized, the physiological factors governing isoform expression of this protein kinase are largely unknown. Nerve/contractile activity has a major impact on the metabolic phenotype of skeletal muscle, therefore likely to influence AMPK isoform expression. Spinal...
متن کاملTitle: Slow- and fast-twitch rat hind limb skeletal muscle phenotypes 8 months after spinal cord transection and olfactory ensheathing glia transplantation Running title: Skeletal muscle phenotype of OEG-transplanted paraplegic rats Key words: Skeletal muscle phenotype, myosin subunit isoforms, muscle paralysis
Paralyzed skeletal muscle of rats with spinal cord injury (SCI) undergoes atrophy and a switch in gene expression pattern which leads to faster, more fatigable phenotypes. Olfactory ensheathing glia (OEG) transplants have been reported to promote axonal regeneration and to restore sensory-motor function in animals with SCI. We hypothesized that OEG-transplants could attenuate skeletal muscle ph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 103 5 شماره
صفحات -
تاریخ انتشار 2007